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Abstract

In the past, we have developed a micromechanically-based constitutive model of a 2D, monodisperse granular

assembly consisting of circular particles, in which the tangential displacements at particle–particle contacts were limited

to microslip only i.e. particles do not slide relative to each other. This constitutive law was later extended, using slightly

more advanced contact laws, to include sliding contacts, along with the potential for loss of contacts. Furthermore,

through these contact laws, evolution of the distribution of contact modes (non-sliding or microslip contacts, sliding

contacts and loss of contacts), contact forces and the density of contact directions, can be determined as the defor-

mation proceeds i.e. deformation-dependent anisotropies. In this paper we apply this latter constitutive model to shear

band formation in a bi-axial test. Using an initially isotropic sample, we demonstrate that the constitutive model can

reproduce the various anisotropies that have been observed in experiments and simulations. Moreover, the predicted

shear band properties (e.g. thickness, inclination, prolonged localisation, void ratio) show even better agreement with

experimental observations than previously found using our past models. These results take on particular significance

when one considers that, in contrast to the constitutive equations traditionally used for granular materials, the mi-

cromechanically-based constitutive model presented here contains a direct link to the physical and measurable prop-

erties of particles (e.g. particle–particle friction coefficient, particle stiffness coefficients) and so arguably contains no

fitting parameters.
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1. Introduction

One of the difficulties encountered when handling granular matter is the lack of a well-accepted con-

stitutive model. By now it should be widely acknowledged that the behaviour of granular materials is

governed by the interaction between constituent particles. That is, the finite size of particles cannot be

ignored in a continuum model. For example, the ability of particles to rotate significantly reduces the
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strength of granular materials (Oda et al., 1982). With this in mind, if we are to remain in a continuum

setting, the classical models of plasticity need to be extended for granular materials to include, at the very

least, the effects of a length-scale and particle rotation. This extension can be made within the framework of

micropolar and/or higher order strain gradient theories. A less phenomenological approach would be to
develop constitutive models based on averaging the discrete interactions between particles over a region, to

obtain continuum laws. This is the approach taken here.

In this paper, a micromechanically based micropolar constitutive law is developed for two-dimensional,

dry assemblies of uniformly-sized, circular particles. The homogenisation procedure used to obtain the

constitutive law is the small strain scheme of Tordesillas and Walsh (2002) and is outlined here in Section 2.

In particular, this scheme is considered high resolution, as it is based around the contacts of a single particle

and its nearest neighbours to enable fine-scale structures to be captured. Section 3 introduces specific strain

dependent contact laws into the homogenisation procedure, which incorporate sliding and non-sliding
contacts, a rolling resistance and loss of contacts. These strain dependent contact laws are obtained from a

mean-field approximation to the motion around a contact. Hence, these strain dependent contact laws

naturally result in an evolving contact anisotropy and contact force anisotropy. To demonstrate this

anisotropy development, the constitutive laws are presented in a form that assumes that the particle

contacts are initially isotropically distributed in both direction and force. Finally, in Section 4, the problem

of shear band formation and evolution in bi-axial test is studied to test the constitutive model. The shear

band analysis adopted here is based on the method presented in Tordesillas et al. (in press). The method is a

combination of the one-dimensional analysis first introduced for micropolar continua by M€uhlhaus and
Vardoulakis (1987), and an incremental step-by-step procedure for the post localisation analysis. Addi-

tionally, from the onset of deformation, the quantities defining the characteristics of the material (e.g.

contact modes, contact anisotropy and contact force anisotropy) are updated in a stepwise manner after

each small increment of strain. Although this method of shear band analysis is restrictive, in comparison for

example to a finite element method, the semi-analytic solutions provided by the one-dimensional simpli-

fication help to identify the limitations of the shear band analysis versus the constitutive model (Tordesillas

et al., 2003).
2. The micropolar homogenisation scheme

Recently, Tordesillas and Walsh (2002) derived two-dimensional expressions to link discrete quantities,

such as the relative particle motion, contact forces f and contact moments M , to the micropolar continuum

concepts of stress r, couple stress l, strain e and curvature (gradient in rotations) j. Their approach differs

from many previous homogenisation methods in that it is based on averaging the discrete quantities over

only a small particle cluster consisting of just a single particle and its immediate neighbours (the first ring).

The expressions obtained by Tordesillas and Walsh (2002) were:
rab ¼ 1

pRð1 þ mÞ

Z
X
fanbUdn; ð2:1Þ

la ¼
1

pRð1 þ mÞ

Z
X
½Mna þ Reb/3fbnan/�Udn: ð2:2Þ
In the above expressions, R represents the radius of circular particles (i.e. a monodisperse system), m rep-

resents the void ratio of the Voronoi cell associated with the particle cluster (ratio of the area of the void to

the area of the particle), na is the a-component of the unit vector n describing the direction of the contact

from the particle centre, eb/3 is the permutation symbol and X represents all possible orientations in two-
dimensional space. A repeated subscript signifies a summation over the range of the repeated subscript.
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Finally, the contact density distribution function U describes the expectation of finding a contact in a given

direction. For a particle with N contacts,
Z
X

Udn ¼ N : ð2:3Þ
Note, both the contact moments and the contact forces contribute to the couple stress in (2.2).
Eqs. (2.1) and (2.2) can be used to construct micromechanically-based, micropolar constitutive models

for monodisperse granular materials once (i) a link is established between the discrete quantities and

deformation e.g. between contact force and strain, and (ii) the probable distribution of contact orientations,

i.e. U, is completely known. Obviously, both of these requirements pose significant challenges. However, the

first of these requirements can be tackled by introducing a simple, well-known, set of contact laws which

link contact forces and moments to the relative displacement and rotation of contact points. Homogeni-

sation or averaging techniques must then be employed to relate the relative motion at contacts to the

continuum properties of strain and curvature. This procedure will be discussed later in Section 3. The
following discussion will concentrate on the second requirement, namely that of linking contact anisotropy

with deformation, which arguably poses a far greater challenge.

The form of the contact anisotropy remains an open problem and is an area that is currently attracting

considerable research (e.g. Rothenburg et al., 1989; Chapter 4 of Oda and Iwashita, 1999; Nouguier-Lehon

et al., 2003; Kruyt and Rothenburg, 2003; Luding, 2003). An expression commonly fitted to experimental

and simulation data for the contact anisotropy is
Uðn;m; v; mÞ ¼ N
2p

ð1 þ v cosð2hÞÞ; ð2:4Þ
where v is the degree of contact anisotropy and can take values in the range 0 < v6 1. The symbol h is

defined by cos h ¼ m � n, where the ‘dot’ denotes the scalar product, and m is the unit vector pointing in the

direction of greatest probability of finding a contacting neighbour. The evolution of the contact anisotropy

can then be incorporated into (2.1) and (2.2) by linking N and v to the deformation. The obvious drawback

of this approach is that, unless a universal contact anisotropy evolution law is available, the resulting

constitutive equation will be unique to each application, as the evolution of the fabric has been restricted to

a predefined mode of deformation. This may compromise a model’s generality and its ability to predict
novel anisotropies arising in highly localised structures like shear bands. One of the main aims of the

current paper is to show that contact anisotropy need not be predefined. In fact, we propose that the

contact laws alone can provide enough anisotropy and evolution if they credibly account for the various

modes of contact (non-sliding, sliding and loss of contacts). Moreover, the predicted evolution of the force

and contact anisotropies are consistent with those observed in shear bands. To demonstrate or test this

proposal, for the remainder of this paper we will set v ¼ 0, which corresponds to an initially isotropic

contact distribution.
3. Contact laws and the micromechanical constitutive model

Presented in this section are expressions used in Eqs. (2.1) and (2.2) to link contact forces and moments

to particle motion, along with the resulting micromechanical constitutive model. The modification of these

contacts laws from our earlier models will be discussed, to highlight the source of the current model’s

significantly improved predictive capabilities.

The normal force at a contact is assumed to consist of two parts: (i) the initial normal force at a contact,
and (ii) the normal force resulting from a relative normal displacement of contacting particles. If contacts

are assumed to be cohesionless and linear elastic, then
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f n ¼ f initial þ knDun if f initial þ knDun < 0 ) evolving normal contact force

0 if f initial þ knDun P 0 ) no contact

�
ð3:1Þ
where f initial is the initial normal contact force, kn is the particle’s normal stiffness coefficient, and Dun is the

relative normal displacement of contact points between two contacting particles. The previous models of

Tordesillas and Walsh (2002); Walsh and Tordesillas (2002); Tordesillas et al. (in press) assumed a constant
f n, that is kn ¼ 0, and hence did not account for the evolution of the normal contact force or the potential

for loss of contacts (f initial þ knDun P 0).

The initial normal contact force reflects the initial confinement imposed on the granular material at the

boundaries (wall, experimental apparatus, free surface etc.). The initial normal contact force can contain

any form of anisotropy, but in keeping with the aim expressed in the previous section of demonstrating how

anisotropy can naturally arise from the current constitutive model, it is assumed that the normal contact

force distribution is initially isotropic, namely
f initial ¼ 	 gknR
2p

: ð3:2Þ
In other words, it is assumed that a particle initially experiences an equal compression in all directions of

magnitude gR. In general, g would be expected to be less than 10%, and for hard discs it would be more
likely to be under 1%.

The above contact law incorporates the potential for loss of contacts as the deformation of the granular

material proceeds. A loss of contact in certain directions will remove any contribution to the evaluation of

(2.1) and (2.2) from the corresponding range of angles in X. This would have the same effect as choosing a

contact density distribution function that is zero or ‘‘switched off’’ for angles in which particle contacts are

broken. In other words, without modifying U, the effects of an evolving contact anisotropy have been

incorporated through the contact law (3.1).

The tangential contact force can be approximated by following Coulomb’s contact law, that is
f t ¼
signðDutÞljf nj if jktDutjP jlf nj and f n < 0 ) sliding contact

ktDut if jktDutj < jlf nj and f n < 0 ) non-sliding contact

0 if f n P 0 ) no contact

8<
: ; ð3:3Þ
where l is the inter-particle friction coefficient, kt is the particle’s tangential stiffness coefficient, and Dut is the

tangential component of the relative displacement of the contact points. Note that the initial tangential

contact force is assumed to be zero. This assumption may not be appropriate if, for example, the effect of

gravity on the initial particle interaction is to be included. The previous models of Tordesillas and Walsh

(2002) and Walsh and Tordesillas (2002) and Tordesillas et al. (in press) only considered non-sliding contacts.

A linear contact law is also used to approximate the rolling resistance for both sliding and non-sliding

contacts,
M slid ¼ kslidDx; sliding contacts ð3:4Þ

Mno slid ¼ kno slidDx; non-sliding contacts ð3:5Þ

where Dx is the relative rotation at a contact, and kslid and kno slid are the coefficients of rolling stiffness for

sliding and non-sliding contacts, respectively.

The above contact laws, Eqs. (3.1)–(3.5), are to be used in (2.1) and (2.2) to link the continuum quantities

of stress and couple stress to the deformation, however, we still need to relate the discrete relative motion at

contacts to the continuum quantities of strain and curvature. This link has been the topic of considerable

research (e.g. Bagi, 1996; Chapter 1 of Oda and Iwashita, 1999; Dedecker et al., 2000; Bardet and
Vardoulakis, 2001), with most studies concentrating on finding schemes to gain a sensible strain measure

from the non-affine motions of a large number of particles. As our approach is based on quantities
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averaged over a very small cluster of particles (consisting only of a single particle and its immediate

neighbours), we expect that the corresponding strain measure is simpler. In fact, Tordesillas and Walsh

(2002) already utilised a link between strain, curvature, relative displacement at a contact and the relative

rotation at a contact, which was provided by Chang and Ma (1991). This method approximates the relative
motion of two particles by a Taylor’s series expansion about the contact point. For two circular particles,

labelled ‘a’ and ‘b’, of radius R, the relative displacement Duaba and rotation Dxab can be expressed as
uaa ¼ uba þ 2Ruba;bnb þ
ð2RÞ2

2!
uba;b/nbn/ þ � � � þ ð3:6Þ

xa ¼ xb þ 2Rxb
;bnb þ

ð2RÞ2

2!
xb

;b/nbn/ þ � � � þ; ð3:7Þ
where a comma within a subscript represents a partial derivative with respect to all the subscripts following

the comma. Combining the following well-known expressions for the relative motion of two particles:
Duaba ¼ uaa 	 uba þ Reab3nbðxa þ xbÞ ð3:8Þ

Dxab ¼ xa 	 xb; ð3:9Þ

with (3.6) and (3.7), and keeping only the first order terms, leads to
Dua ¼ 2Rua;bnb þ 2Reab3nbðx þ Rx;/n/Þ ð3:10Þ

Dx ¼ 2Rx;ana: ð3:11Þ

In (3.10) and (3.11) the superscripts denoting particle labels have been dropped for generality. The mi-

cropolar strain and curvature are defined as,
eab ¼ ua;b þ eab3x ð3:12Þ

ja ¼ x;a; ð3:13Þ

respectively. Hence, from (3.10)–(3.13), the following links are obtained between the discrete and contin-

uum deformation quantities:
Dun ¼ 2Reabnanb; ð3:14Þ

Dut ¼ 2Rðeabnbta 	 RnujuÞ; ð3:15Þ

and
Dx ¼ 2Rjana: ð3:16Þ

In (3.15), ta is the a-component of the unit vector perpendicular to n.

Eqs. (3.14)–(3.16) provide the link between the contact laws and the deformation. Hence (3.14) and

(3.15) and the contact laws now give a deformation dependent contact force and moment anisotropy.

Furthermore, the three tangential contact modes, i.e. sliding, non-sliding and loss of contacts, can be easily

identified through the inequality constraints in Eq. (3.3). Note that these inequality constraints have an

angular dependence through n, such that the contact mode will vary around the particle according to the

direction of contact. Therefore, the integration over all contacts in (2.1) and (2.2) can be separated into a
sum of integrals, one for each contact mode. That is, Eqs. (2.1) and (2.2) may be written as
rab ¼ 1

pRð1 þ mÞ
XT
i¼1

Z ci

ai

f slid
a nbUdh þ

Z di

ci

f no slid
a nbUdh

sliding contacts non-sliding contacts

2
64

3
75; ð3:17Þ
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la ¼
1

pRð1 þ mÞ
XT
i¼1

Z ci

ai

½M slidna þ Reb/3f slid
b nan/�Udh

sliding contacts

þ
Z di

ci

½Mno slidna þ Reb/3f no slid
b nan/�Udh

non-sliding contacts

2
66666664

3
77777775
: ð3:18Þ
The integrals corresponding to regions of no contact are not shown, as regions of no contact do not

contribute (directly) to the stress or couple stress. The summation in front of each integral is a concise

representation of the multiple integrals (multiple regions of a particular contact mode) that can be

encountered as X ¼ 0 ! 2p. The integration limits and the upper limit of the summation index, T , obey the

following relationships:
XT
i¼1

½ðci 	 aiÞ þ ðdi 	 ciÞ þ ðei 	 diÞ� ¼ 2p; and a1 ¼ 0; aiþ1 ¼ ei; eT ¼ 2p: ð3:19Þ
Eq. (3.19) is a condition that ensures that all possible contact directions (0 ! 2p) have been assigned a

contact mode. In (3.19), the quantity ðei 	 diÞ corresponds to the range of angles for which there are no

contacts. The sliding contact regions ðci 	 aiÞ are further separated into two regions, ðbi 	 aiÞ and ðci 	 biÞ,
which are related to signðDutÞ in (3.3) being positive or negative, respectively. These integration limits are
determined from the inequality constraints in (3.1) and (3.3). For example, with increasing angle a sliding

contact region ðc3 	 b3Þ is immediately followed by a region of no contact ðe3 	 d3Þ, the non-sliding contact

integration limits are set to have the property d3 ¼ c3. Due to the form of the constraints in (3.5) and (3.7),

involving absolute values of cosine squared functions, there exists an upper bound on the value that the

summation index T may take.

Substitution of the various contact laws presented here into (3.17) and (3.18), followed by integration,

results in the following micromechanical micropolar constitutive equations:
rab ¼ 2RaðmÞ
p

XT
i¼1

f initial

2pR

w1ðai; diÞWab1 þ w2ðai; diÞWab2 þ w3ðai; diÞWab3

þlesa3

ðw1ðbi; ciÞ 	 w1ðai; biÞÞWsb1 þ ðw2ðbi; ciÞ 	 w2ðai; biÞÞWsb2

þðw3ðbi; ciÞ 	 w3ðai; biÞÞWsb3


 �2
4

3
5

þemnkn

w4ðai; diÞWab1Wmn1 þ w5ðai; diÞðWab1Wmn2 þ Wab2Wmn1Þ
þw6ðai; diÞðWab1Wmn3 þ Wab2Wmn2 þ Wab3Wmn1Þ
þw7ðai; diÞðWab2Wmn3 þ Wab3Wmn2Þ þ w8ðai; diÞWab3Wmn3

þlesa3

ðw4ðbi; ciÞ 	 w4ðai; biÞÞWsb1Wmn1

þðw5ðbi; ciÞ 	 w5ðai; biÞÞðWsb1Wmn2 þ Wsb2Wmn1Þ
þðw6ðbi; ciÞ 	 w6ðai; biÞÞðWsb1Wmn3 þ Wsb2Wmn2 þ Wsb3Wmn1Þ
þðw7ðbi; ciÞ 	 w7ðai; biÞÞðWsb2Wmn3 þ Wsb3Wmn2Þ
þðw8ðbi; ciÞ 	 w8ðai; biÞÞWsb3Wmn3

2
66664

3
77775

2
66666666664

3
77777777775

þeajkt w1ðci; diÞWjb1 þ w2ðci; diÞWjb2 þ w3ðci; diÞWjb3

� �

	esjkt

w4ðci; diÞWab1Wsj1 þ w5ðci; diÞ
eha3Whb1Wsj1 þ ehs3Wab1Whj1

þehb3Wah1Wsj1 þ ehj3Wab1Wsh1

� �

þw6ðci; diÞ
Wjb1dsa þ Wjs1dba þ Wsb1dja þ Wab1djs

þWaj1dbs þ Was1dbj 	 6Wab1Wsj1

� �

þw7ðci; diÞ
ehb3Wjh1

Wsa3
þ ehj3Whb1

Wsa3

þeha3Wsh1Wjb3
þ ehs3Wha1Wjb3

� �
þw8ðci; diÞðWab1Wsj1 þ djbdsa 	 Wjb1dsa 	 djbWas1Þ

2
6666666664

3
7777777775

2
66666666666666666666666666666666664

3
77777777777777777777777777777777775
ð3:20Þ
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la ¼
2RaðmÞjw

p

XT
i¼1

kslid½w1ðai; ciÞWaw1 þ w2ðai; ciÞWaw2 þ w3ðai; ciÞWaw3�
þðkno slid þ R2ktÞ½w1ðci; diÞWaw1 þ w2ðci; diÞWaw2 þ w3ðci; diÞWaw3�

� �
; ð3:21Þ
where
dab ¼ 1 if a ¼ b
0 if a 6¼ b

�

Wab1 ¼ mamb

Wab2 ¼ ½e/b3Wa/1 þ e/a3W/b1�

Wab3 ¼ ½dab 	 Wab1�

w1ðx; yÞ ¼
1

4
ð2ðy 	 xÞ þ ðsin 2y 	 sin 2xÞÞ

w2ðx; yÞ ¼
1

4
ðcos 2x	 cos 2yÞ

w3ðx; yÞ ¼
1

4
½2ðy 	 xÞ 	 ðsin 2y 	 sin 2xÞ�

w4ðx; yÞ ¼
1

32
ð12ðy 	 xÞ þ 8ðsin 2y 	 sin 2xÞ þ ðsin 4y 	 sin 4xÞÞ

w5ðx; yÞ ¼
1

32
ð4ðcos 2x	 cos 2yÞ þ ðcos 4x	 cos 4yÞÞ

w6ðx; yÞ ¼
1

32
ð4ðy 	 xÞ 	 ðsin 4y 	 sin 4xÞÞ

w7ðx; yÞ ¼
1

32
ð	4ðcos 2y 	 cos 2xÞ þ ðcos 4y 	 cos 4xÞÞ

w8ðx; yÞ ¼
1

32
ð12ðy 	 xÞ 	 8ðsin 2y 	 sin 2xÞ þ ðsin 4y 	 sin 4xÞÞ:

ð3:22Þ
Note, ma and mb are the a and b-components of the arbitrary unit vector m used as reference direction
corresponding to h ¼ 0 in the integration of (3.17) and (3.18). Furthermore, the number of contacts has

been related to the local void ratio using the following expression provided by Hinrichsen et al. (1990):
N ¼ 1

6 	 p
ffiffiffi
3

p 36
h

	 4p
ffiffiffi
3

p
	 p2ð1 þ mÞ

i
; ð3:23Þ
for 06N 6 6. Through (3.23), aðmÞ is defined as
aðmÞ ¼ 1

2pRð1 þ mÞ
36 	 4p

ffiffiffi
3

p
	 p2ð1 þ mÞ

6 	 p
ffiffiffi
3

p
" #

: ð3:24Þ
The porosity may also be related to the strain through the concepts of mass conservation by
m 	 m0 � ð1 þ m0Þ½e11 þ e22�; ð3:25Þ

where m0 is the initial void ratio.

As a final note on the contact laws and the constitutive model presented in this section, it is expected that

at large strains the contact laws, and therefore the constitutive model, may cease to be valid. With large

strains, Dun, Dut and Dx may not adequately represent the deformation occurring at a contact. Initially,
contacting particles will generally move apart and form new contacts, such that the measures Dun, Dut and
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Dx are no longer relevant. However, the formulation provided by Tordesillas and Walsh (2002) introduces

another level of subtlety. In transferring information from the discrete to the continuous, the motion of

individual particles is never tracked. Instead, Tordesillas and Walsh make use of the expectation of finding a

contact in a given direction and the behaviour of those contacts. One interpretation of this is that the
contact laws should reflect the net effect of the expected contacts, just as experimental results of contact

orientations reflect the average contact distribution from a large sample volume. An alternative interpre-

tation is that the expectations are an average over all possible states that a particle can experience. Clearly,

interpreting this approach in the limit of large strains is an area in need of further study. For this reason,

results presented in Section 4 are arbitrarily limited to small shear strains of less than 0.4.
4. Shear band analysis and results

As mentioned earlier, one of the aims of the current paper is to demonstrate that the various evolving

contact anisotropies can be predicted by the micromechanically-based constitutive model presented in

Section 3. Towards this end, the one-dimensional shear band analysis first provided by M€uhlhaus and

Vardoulakis (1987), and later extended by Bardet and Proubet (1992) and Tordesillas et al. (in press), for a
micropolar continuum subject to the bi-axial test, will be used to explore the capabilities of the micro-

mechanically-based constitutive model in predicting shear band formation and microstructural evolution.

In the past this method for shear band analysis has been applied to micropolar constitutive models from

the deformation theory of plasticity for frictional materials with internal constraint (M€uhlhaus and

Vardoulakis, 1987; Bardet and Proubet, 1992; Vardoulakis and Sulem, 1995). Although these constitutive

models have been successful in predicting the onset and thickness of shear bands, they require a number of

poorly understood fitting parameters. These fitting parameters, and therefore the constitutive models,

contain no information about the particle microstructure, hence they are unable to predict microstructural
evolution. In contrast to these models, the micromechanically-based constitutive model presented in Sec-

tion 3 contains a direct link to the physical and measurable properties of particles (e.g. particle–particle

friction coefficient, particle stiffness coefficients) and so contains no fitting parameters. All results obtained

with the current model should be viewed in this light.

The shear band analysis proposed by M€uhlhaus and Vardoulakis (1987) involves solving the rate form of

the stress equilibrium equations for a micropolar material, and then identifying deformation solutions that

may exist within a narrow region (shear band). The rate form of the stress equilibrium equations for a

micropolar material is:
dr11;1

dt

� �
þ dr12;2

dt

� �
þ r

dC;2

dt

� �
¼ 0

dr21;1

dt

� �
þ dr22;2

dt

� �
þ r

dC;1

dt

� �
¼ 0

dl1;1

dt

� �
þ

dl2;2

dt

� �
þ dr21

dt

� �
	 dr12

dt

� �
¼ 0

ð4:1Þ
where r ¼ r11 	 r22 and C represents the rigid body rotation. The angular brackets h i represent the

Jaumann derivative of the quantity contained within. Note also that d=dt indicates a material derivative. As

depicted in Fig. 1, the proposed shear band analysis assumes that prior to shear band formation the

deformation is homogeneous with no rotations. At a certain strain, a second inhomogeneous deformation

with finite rotations can exist within a narrow region, called the shear band. The one-dimensional analysis

assumes that all gradients are zero along the shear band. The shear band inclination angle is defined as the
angle that the shear band makes with the minor principal strain axis.



X2

X1

shear band
inclination 
angle

y
x

(a)                (b)                 (c)                    (d)

Fig. 1. Stages in shear band formation within a bi-axial test: (a) initial specimen, (b) homogeneous deformation prior to shear band

formation, (c) the onset of shear banding, and (d) shear band formation. The applied compression is in the X2 direction at a constant

rate. The vertical boundaries are allowed to deform such that r11 is constant at these boundaries. For the homogeneous deformation

prior to shear band formation it is assumed that e12 ¼ e21 ¼ j1 ¼ j2 ¼ 0.
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Inhomogeneous solutions are sought to (4.1) which satisfy the boundary conditions used by Bardet and
Proubet (1992), which are consistent with the experimental observations and DEM simulations of Iwashita

and Oda (2000) and Oda and Kazama (1998). These boundary conditions are as follows:

(i) Across a shear band (i.e. 	db 6 y6 db where 2db is the shear band thickness), the displacement rate and

the rotation rate are symmetrical in y.

(ii) V1 ¼
V �

1

2
and V2 ¼

V �
2

2
at y ¼ db and V1 ¼ 	 V �

1

2
and V2 ¼ 	 V �

2

2
at y ¼ 	db. Since it is assumed that regions

outside the shear band act rigidly after the bifurcation strain is reached, and that the bi-axial test is

strain controlled, the rate of vertical displacement of the rigid outer regions of the specimen V �
2 is pre-

scribed. The horizontal rate of displacement V �
1 , on the other hand, needs to be determined from the

strain within the shear band.

(iii) dx
dt ¼ 0 at y ¼ db and at y ¼ 	db and a maximum at y ¼ 0.

(iv) Continuity of traction at the shear band boundary.

Once the displacement and rotation rates are determined from solving (4.1) subject to the boundary

conditions, an incremental procedure is adopted to determine the strain and rotation within a shear band,

and therefore the evolution of the shear band. For a complete and more detailed discussion of the shear
banding problem and the method outlined here, including the incremental procedure, we refer the reader to

Tordesillas et al. (in press).

One the of the main advantages of the current proposed constitutive equations is that the evolution of

the contact force anisotropy and the contact anisotropy are naturally incorporated via Eqs. (3.1) and (3.3)

and the contact mode transition angles ai, bi, ci and di. In the current analysis, from the onset of defor-

mation, the transition angles ai, bi, ci and di are updated after each small increment of strain using the

inequality constraints in (3.1) and (3.3). Hence, the characteristics of the material are updated in a stepwise

manner. This enables a larger range of shear strains to be explored than an otherwise small strain analysis
would allow.

Fig. 2 displays four bifurcation curves, showing the minimum shear strain e11–e22 at which a shear band

could potentially form at various shear band inclinations. Each curve corresponds to an initial void ratio.

There are two important features to note. First, unlike our earlier model (Tordesillas et al., in press), the

current constitutive equation predicts a minimum strain within each bifurcation curve. Furthermore, this

minimum strain corresponds to a shear band inclination angle that is within the expected or observed shear

band inclinations of 50–70�. Secondly, the void ratio is predicted to affect both the onset and inclination

angle of the shear band, with denser granular materials having a delayed onset and a slightly larger
inclination angle. Unfortunately, we are unaware of the existence of any experimental or simulation data

that could verify this last prediction.
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Fig. 2. Bifurcation curves for four initial void ratios: 0.18, 0.25, 0.33, 0.41. Each curve represents the minimum shear strain at which a

shear band, of a particular inclination, can form. Included in this figure is a line connecting the minimum strain for each bifurcation

curve. In this and, unless stated otherwise, all following figures, model parameters are v0 ¼ 0:25; g ¼ 0:05; kn ¼ kt ¼ 4 � 107 N/m;

kslid ¼ kno slid ¼ 7 � 102 N m/rad, R ¼ 0:005 m. These parameters will be chosen for consistency with the parameters used in the DEM

simulations of Iwashita and Oda (2000). These parameters reflect a moderate particle packing, with an initially isotropic contact and

contact force distribution.
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In Fig. 3, bifurcation curves are shown for three initial confinement pressures (actually f initial). It can be

seen that the average normal contact force applied to each particle prior to deformation substantially affects

both the strain at the onset of shear banding and the inclination of a shear band. Specifically, the higher

initial normal force delays the onset of shear banding and decreases the minimum-strain shear band

inclination angle. The onset and inclination angle are also predicted to be independent of particle size.

Fig. 4 gives the prediction of how the shear band thickness evolves with shear strain. As in Fig. 2, each
curve represents an initial void ratio. All but one of the curves show the shear band thickness decreasing to

a steady value of approximately three particle diameters. A persistent (steady) shear band thickness is

critical for consistency with the stable shear bands generally observed in experiments. The exception to the

persistent shear band width is the case of an initial void ratio of 0.41, which corresponds to quite a loose
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connecting the minimum strain for each bifurcation curve.
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sand. Note that it has been reported that shear bands in loose sands can change slightly in position, ori-

entation and width during their evolution (see Chapter 4 of Oda and Iwashita, 1999). Perhaps the loose

sand prediction seen in Fig. 4 reflects this experimental finding.

Although scaled by the particle diameter, the shear band thickness curves (in Fig. 4) are still dependent

on the particle size. Fig. 5 shows the particle size dependency for the void ratio 0.25, which was one of the

curves from Fig. 4. It can be seen that the constitutive model predicts the scaled shear band widths to

increase with decreasing particle size, with a shear band thickness of approximately 10 particle diameters
for a particle size of 1 mm. In the current model this particle size dependency originates from the contact

moments i.e. terms involving kno slid þ R2kt. Therefore, a zero rolling resistance kno slid ¼ 0 is the limiting case

of an increasing particle size. Rolling resistance has been used in DEM simulations as a simple way of

including the effects of non-circular particle shapes. It is interesting to note that the shear band thicknesses

reported in real sands (7–20 particle diameters (M€uhlhaus and Vardoulakis, 1987; Harris et al., 1995;
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Oda and Kazama, 1998), consisting of small non-spherical particles, are often much larger than those

observed in idealised two-dimensional Schneebeli systems (1–4 particle diameters (Calvetti et al., 1997)),

which consist of circular rods. This width difference may be purely due to the transition between a two-

dimensional and a three-dimensional experiment, however, it would seem reasonable that the angular sand
particles contribute to the thicker shear bands observed in sands. It is well known that large voids form

within an evolving shear band, with a concomitant reduction in the number of contacts per particle. Force

is then transmitted across a shear band through an unstable particle network. A column of particles is

particularly prone to buckling via particle rotations. Therefore, for a shear band to be multiple particles

wide, a rolling resistance must be present to inhibit particle rotations. That is, if rolling resistance were not

present between contacting particles, long particle chains would not be present within shear bands.

Unfortunately, this explanation only describes what is needed to have wide shear bands, not why shear

bands are wide. In any case, the thickness predictions presented in Fig. 5 are certainly consistent with the
findings reported in the literature. Note that the thickness predicted by the current model is also consistent

with the shear band analysis based on the deformation theory of plasticity (M€uhlhaus and Vardoulakis,

1987; Bardet and Proubet, 1992).

In Fig. 6 the change in void ratio prior to shear banding and within a shear band can be seen for the four

initial void ratios examined in Figs. 2 and 3. As expected, prior to shear band formation there is com-

pression and then within the shear band there is dilation, as revealed by the appearance of large voids

within the shear band in sands (e.g. see Chapter 4 of Oda and Iwashita, 1999) and Schneebeli systems

(Calvetti et al., 1997). In Fig. 6 there is also some indication of a final critical, or steady state, void ratio
(Chapter 4 of Oda and Iwashita, 1999; Huang et al., 2002; Rothenburg and Kruyt, 2003), unfortunately the

small strain analysis used here does not permit this to be investigated.

The results shown in Figs. 2–6 have all dealt with the continuum properties of shear bands. However, the

micromechanics incorporated into Eqs. (3.20) and (3.21) provide a link to the evolution of the discrete

particle microstructure and its evolution. The results presented in the remainder of this section will con-

centrate on the evolution of the particle fabric and the contact forces acting on particles, as predicted by the

continuum constitutive model.
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B.S. Gardiner, A. Tordesillas / International Journal of Solids and Structures 41 (2004) 5885–5901 5897
Still one of the clearest experimental examples of microstructural development in a bi-axial test dis-

playing shear banding was provided by Oda et al. (1982). Using photoelastic Schneebeli rods with oval

cross-sections, Oda and his co-workers observed that particles tended to align themselves in column-like

structures prior to shear band formation, with both the contact directions and the normal contact forces
aligned with the direction of the applied compression. That is, there is a tendency for a loss of contacts in a

direction perpendicular to the applied compression, with the normal contact force being a maximum in the

direction of the applied compression. This result has been reproduced many times in other experiments and

DEM simulations (e.g. Bardet and Proubet, 1991; Iwashita and Oda, 2000; Rothenburg and Bathurst,

1993; Sidoroff et al., 1993; Kruyt and Rothenburg, 2003). Typically, the contact distribution is found to be

of the bipolar form given by Eq. (2.4). Furthermore, the normal contact force is also found to have this

bipolar form. In the bi-axial DEM simulations of Rothenburg and Bathurst (1993); Sidoroff et al., 1993);

Kruyt and Rothenburg (2003), the tangential contact force is seen to contain four lobes with a minimum
tangential contact force in directions both parallel and perpendicular to the applied normal compression.
Fig. 7. Contact forces and contact modes at the onset of shear banding for the shear band evolution presented in Fig. 4 with a void

ratio of 0.25. (a) is a polar plot showing the normal contact force and is normalised by the current average normal contact force. (b) is a

polar plot showing the tangential contact force and is also normalised by the current average normal contact force. (c) shows the

variation in the contact modes around a particle. The vertical dashed line indicates the direction of the applied compression. The

sliding contacts have been separated into two regions depending on signðDutÞ.
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For both the normal and tangential contact forces these studies observed that after an initial increase in

anisotropy, the degree of anisotropy then decreases.

Fig. 7 shows the normal contact force, the tangential contact force and the contact modes at the onset of

shear banding. The contact force graphs have been scaled by the current average normal contact force. The
first thing of note is that the constitutive model is able to predict both a contact and a contact force

anisotropy arising from an initially isotropic contact distribution. Furthermore, the degree, shape and

alignment of contacts and the contact force anisotropy are generally consistent with those seen in exper-

iments and simulations of bi-axial compression discussed previously. However, there are some differences

between the predicted distributions and those seen in experiments and simulations. Firstly, the degree of the

predicted contact force anisotropies does not decrease after initially increasing. This highlights a limitation

of the model at larger strains, associated with its current inability to incorporate the formation of new

contacts. Secondly, the predicted contact distributions have no contacts in the direction perpendicular to
the applied compression, whereas experiments and DEM simulations always find contacts in these direc-

tions. It is thought that this difference is due to the one-dimensional nature of the shear band analysis used.

If the one-dimensional analysis was relaxed, such that a variation in void ratio and strain could occur both
Fig. 8. Contact forces and contact modes at a shear strain of 0.4 for the bi-axial test and shear band presented in Fig. 7. (a) is a polar

plot showing the normal contact force and is normalised by the current average normal contact force. (b) is a polar plot showing the

tangential contact force and is also normalised by the current average normal contact force. (c) shows the variation in the contact

modes about a particle. The vertical dashed line indicates the direction of the applied compression.
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across the shear band and along the shear band, the average contact orientations from the whole specimen

would likely result in finite contacts perpendicular to the applied compression. It is the goal of future work

to test the current constitutive model in a 2D micropolar finite element analysis.

Based on his earlier experiments (Oda et al., 1982), Oda and Kazama (1998) proposed that the formation
of shear bands coincides with the buckling of the particle columns, through particle rotation rather than

sliding, with particles predominately rotating in the same direction. It may also be concluded, from viewing

the images from the 1982 experiments and Iwashita and Oda’s (2000) DEM simulations, that the direction

of the contacts and maximum normal contact force rotates away from the direction of the applied com-

pression, such that contacts are maintained across the shear band and generally lost along the shear band.

The contact evolution within the shear band is shown in Fig. 8. Consistent with the previously discussed

experiments and simulations, within the shear band, it can be seen that the contact orientations and the

normal contact force are predicted to rotate away from the direction of the applied vertical deformation,
with even more contacts lost in a direction along the shear band. Furthermore, in keeping with Oda and

Kazama’s (1998) buckling mechanism for shear band formation, which highlighted the importance of

rolling (not sliding), non-sliding contact regions are predicted to be present, in conjunction with unidi-

rectional rotations (see Fig. 9).

Although not clear in Figs. 7 and 8, the magnitude of the maximum normal contact force continues to

increase beyond shear band formation, despite the fact that shear bands are a softening mechanism. Indeed

softening does occur after the onset of shear banding in the current analysis. It is important to realise that

the stress in the region of a particle is not necessarily related to the maximum contact force on the particle.
For example, inside a shear band the void ratio increases and the number of contacts decrease, hence fewer

particle contacts are available to transmit force and the average force on each contact within a shear band

can increase. This is supported by the higher fringe intensity of photoelastic discs observed inside the shear

bands in Oda et al. (1982) experiments, in comparison to discs outside the shear band. Of course, as

mentioned at the end of Section 2, there is always room to question the viability of the simple contact laws

at larger strain.

The total rotation in the region of the shear band, as shown in Fig. 9, refers to the net accumulation of

rotation x since the onset of shear banding. The total rotation is determined from accumulating (adding)
the rotation from all previous strains up until the final strain, which is 40% in this figure. This accumulated
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rotation is equivalent to the disturbance, or particle rotations, recorded in experiments. Note that if one

were to measure the thickness of a shear band based on strain gradients, or instantaneous deformation, as

done in Figs. 4 and 5, the recorded thickness would be less than the thickness measured by taking the

overall disturbance to the material. For example, although the shear band thickness at a shear strain of 0.4
is only 2–3 particle diameters (Fig. 4), the microstructure beyond three particle diameters has been dis-

turbed (finite rotations) due to prior shear strains for which the shear band thickness was greater than three

particle diameters. The shear band thickness shown in Fig. 4 should then be considered an instantaneous

thickness, whereas a shear band thickness implied by rotations would better represent those recorded in

experiments.

The first thing to note in Fig. 9 is that the rotations are predicted to be unidirectional, consistent with the

DEM simulations of Iwashita and Oda (2000). Furthermore, the maximum rotations are of the same order

as those observed in experiments (the actual value is a function of the degree of deformation). In our
previous constitutive model (Tordesillas et al., in press), the shear bands were generally short lived and,

consequently, the accumulated rotations were much smaller than expected. The shear band thickness

determined from the accumulated rotations is approximately twice the width, or 4–6 particle diameters, as

those determined from the instantaneous shear band thickness shown in Fig. 4.

As a final remark, on some scale, it is inevitable that the inhomogeneous nature of the assembly is lost as

a result of a continuum model formulation. Variations from the mean-field estimations can have a sig-

nificant effect on the behaviour of an assembly. However, the large scatter or fluctuations in particle

rotations and displacement about their mean value can be addressed using the principles of thermome-
chanics or ‘‘internal variable theory’’. By building on the earlier work of Valanis (1996), Walsh and

Tordesillas (2004) showed how these fluctuations could be incorporated into the micromechanical model in

a way that is consistent with the laws of thermodynamics.
5. Conclusions

Many of the observed features of shear band formation and evolution have been predicted here using a

micromechanically-based, micropolar constitutive model within a simple (one-dimensional) shear band
analysis, including microstructural evolution such as contact and contact force anisotropy evolution. It is

important to emphasize that these results were obtained without resorting to any poorly understood fitting

parameters, as would be found in a more phenomenological model. It is this last point that encourages our

future research and the implementation of this model within a less restrictive numerical framework.
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